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Surface waves on water of non-uniform depth 

By JOSEPH B. KELLER 
Institute of Mathematical Sciences, New York University 

(Received 20 March 1958) 

1. INTRODUCTION 
Gravity waves occur on the surface of a liquid such as water, and the 

manner in which they propagate depends upon its depth. Although this 
dependence is described in principle by the equations of the ' exact linear 
theory ' of surface waves, these equations have not been solved except in 
some special cases. Therefore, oceanographers have been unable to use 
the theory to describe surface wave propagation in water whose depth 
varies in a general way. Instead they have employed a simplified geometrical 
optics theory for this purpose (see, for example, Sverdrup & Munk (1944)). 
It has been used very successfully, and consequently various attempts, 
,only partially successful, have been made to deduce it from the exact linear 
theory. It is the purpose of this article to present a derivation which appears 
to be satisfactory and which also yields corrections to the geometrical 
optics theory. 

The present derivation is based upon an asymptotic solution of the 
equations of the exact linear theory for periodic waves in water of arbitrary 
non-uniform depth. The solution is asymptotic in the sense that the depth 
and wavelength must be small compared to the horizontal scale length of 
the bottom contour. Our solution is formal since we do not prove its 
asymptotic character. Therefore, it is significant that the first term agrees 
exactly with the asymptotic form of the solution for waves in water with a 
uniformly sloping bottom, as the bottom slope tends to zero. This 
asymptotic form was deduced by Friedrichs (1948). The accuracy of our 
reiult is indicated by the fact that for a bottom slope angle of 6", the 
asymptotic form agrees very well with the exact solution at all points beyond 
one wavelength from the shore (see Stoker 1947). 

Previously Lowell (1949) has shown that in shallow water the geometrical 
optics theory follows from the linear shallow-water theory. The latter is 
a simplified form of the exact linear theory which applies when the depth 
is small compared to the wavelength. The significance of this restriction 
is not clear, in view of the fact that Lowell's derivation depends upon letting 
the wavelength tend to zero. Our derivation seems to clarify this point 
since we require the depth to tend to zero in a fixed ratio to the wavelength, 
while the horizontal scale of the bottom contour is constant. We could 
have obtained the same results by keeping the depth and wavelength constant 
while permitting the horizontal scale length of the bottom contour to become 
infinite. 
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A previous attempt by the present author to derive the geometrical 
optics theory from the exact linear theory was based upon an asymptotic 
solution obtained by requiring the wavelength alone to tend to zero. The 
resulting geometrical optics theory was independent of the depth. That 
result can be explained by noting that waves disturb the water only within 
a few wavelengths of the surface. As the wavelength tends to zero, the wave 
motion is confined to a vanishingly thin layer near the surface, so the waves 
do not ' feel ' the bottom. This derivation, which may be useful for other 
purposes, is contained in Appendix I. 

We will now describe the geometrical optics theory to  which we have 
already referred. In  this theory a propagation velocity is defined at each 
point P of the surface. This velocity is just that which waves of the given 
period would have in water having uniform depth equal to that at P. By 
using this propagation velocity and employing Fermat's principle of optics, 
rays can be defined. It is assumed that surface waves propagate along these 
rays. The variation of the amplitude of these waves along a ray is then 
determined by using the principle of conservation of energy. In its optical 
form this principle states that the flux of energy is the same at all cross- 
sections of a tube of rays. In the present case a tube is bounded by two 
neighbouring rays. The energy flux is proportional to the square of the 
amplitude of the waves and to the distance between the rays. It is assumed 
that at each point P the proportionality factor, which depends upon the 
depth, is the same as for plane waves in water of uniform depth equal to 
the depth at P. From these assumptions the variations of amplitude along 
a ray can be determined. This amplitude variation has been studied by 
Miche (194-4). 

2. FORMULATION OF THE PROBLEM 

We consider the periodic irrotational motion of an inviscid incompressible 
liquid bounded below by the rigid surface Y = - H(x , z )  and bounded 
above by an unknown free surface. In the absence of motion the free 
surface is the plane Y = 0 ; when motion of angular frequency w occurs, 
it is Y = g{eiw"(x,z)) .  Here t denotes the time, 71 is the complex amplitude 
of the surface wave motion, and the positive Y-axis points vertically upward. 
In the exact linear theory of surface waves, the wave amplitude 7 is given 
by 

rl(x,z) = (iw/g)@(x, 0,z). (1) 
Here @(x, Y , x )  is the velocity potential of the fluid motion, and g is the 
acceleration of gravity. 

The velocity potential satisfies the following conditions (see Stoker 
1947) 

A @ = O  in 0 2  Y > ,  - H ( x , z ) ,  (2) 

@F = /3@ on Y = 0 (/3= w2/g), (3 ) 
@D,+H,@,+H,@., = 0 on I'= -H(x,z) .  (4 1 

Furthermore, CD satisfies other conditions which we will consider later 
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We now introduce the new quantities y, h and + defined by 

y = /3Y, h = /3H, #(x,Y,x) = @(x, Y,z) .  (5) 

B2+,, + +xz + #zz  = 0 0 B y > - h(x, z ) ,  (6) 

+,1/ = 4 on y = 0, (7) 
/3z4,+h,~,+h,4, = 0 on y = - h ( x , z ) .  (8 1, 

In terms of these quantities, (2), (3) and (4) become 

in 

The problem we consider is that of finding solutions #I of (6), (7) and (8) 
for large values of /3. 

As the first step towards finding solutions, we introduce three unknown 
functions k ( x ,  x), S(x, z )  and A(x,  y, x, /3). Without loss of generality we 
may express 4 in terms of these functions by the relation 

Next we insert (9) into (6), (7) and (8). 
the following, in which cc = k(y + h) and V = (a/&, a/&) : 

fl2[[(k2- (VS)2}Acosha+A,,cosha+2kA,sinha] + 

4 = A cosh[k(y + h)]eips. (9) 
These equations then become 

+i/3[(V2S)Acosha+2VS. V(Acosha)]+V2(Acosha) = 0 ;  (10) 

A,coshkh+kAsinhkh = Acoshkh y = 0 ;  (11) 

/32A,+i/3AVh. VS+Vh. VA = 0 y = -h. (12) 
We now want solutions of (lo), (11) and (12) for large /3 which represent 
waves travelling on the surface. 

3. SOLUTION OF THE PROBLEM 

T o  solve (lo), (11) and (12), we assume that, for large /3, A has an  
asymptotic expansion of the form 

A N A , ( ~ , z ) +  2 A,(x,y,z)/($)". (13) 
n = l  

Then we insert (13) into (lo), assuming that termwise differentiation 
is correct. When we equate coefficients of each power of /3, we obtain the 
following equations : 

(Al),, cosh a + 2k(A,), sinh a = 2VS. V ( A ,  cosh a )  +A, cosh a V z S ;  
(A7,),,coshu+2K(A,,),sinha = 2VS. C(A,{-,  cosha) +A,,-,coshaV2S+ 

In a similar way, we obtain from (11)  the equations 

(VS)2  = k2;  (14) 
(15) 

+ V2(A,l -z  cosh a )  (n 2 2). (16) 

ktanhkh = 1, (17) 
(An) ,  = 0 y = 0 ( n  2 1). (18). 

(Al), = A, Vh . V S  ,V = - h ,  (191 

Finally, from (12), we obtain 

(An) ,  = AnWl Ch . V S +  Vh . VA,,-2 y = - h (n 2 2). (20) 
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Let us now examine the equations (14) to (20) which must be satisfied 
by k, S and the A,. Equation (17) is a transcendental equation which 
determines K(x,z) in terms of the known depth h(x,x). This is the same 
equation that occurs in the case of uniform depth and its solution is well 
known. Once k is known, (14) is the eiconal equation of geometrical optics 
for S. If the value of S is prescribed at each point of any given curve, the 
solution S can be found by means of the characteristics of (14). These 
characteristics are just the optical rays in a medium of refractive index k, 
and the surfaces S = const. are the corresponding wave-fronts. In  terms 
of these rays the directional derivative A S .  Of, which appears in (15) and (16) 
is just k(df/d~) where 7 measures arc-length along a ray. 

Next let us consider the amplitudes A, which satisfy (15) and (16). 
These equations can be simplified by means of the identity 

(A,),,cosh a+2K(ArL)ysinha = (~oshcr)-~[(A,),cosh~a],. (21) 
Now (21) is inserted into (15), which becomes 

[(Al), C O S ~ '  .IY = (2VS. VA, +Ao V2S)Cosh2 a +Ao V S .  V cosh2 a. (22) 
Now we integrate (22) from zero to y ,  noting that, by (18), (Al)v = 0 at 
y = 0. Thus (22) yields 

(Al), cosh2 a = (2VS. VA, +A, V 2 S  +A, V S  . 0 )  cosh2 a dy. (23) I: 
The integral in (23) is given by 

1; cosh2k(y +h)  dy = 4k-l x 

x [sinhk(y+h)coshk(y+h)-sinhkhcoshkh] +iy. (24) 
We now use (24) in (23) and obtain 

(Al),cosh2a = i(2VS. VAo+AoV2S+AoVS. V )  x 

x {K-llsinh a cosh a - sinh kh coshkh] +y}. (25) 
From (25) we can calculate A, up to an additive function of x and z, once 
A, is known. The method which we will now use to find A, will also 
determine this additive function. For that purpose the equation (16) for 
n = 2 would have to be examined. 

Then we can eliminate (Al), by 
means of (19). 

2A,Vh . V S  = -(2VS.VA,+A,V2S)(sinh2kh +h) +A,VS.(Vh- Vsinh2kh). 

This can be written as 

T o  find A, we set y = - h  in (25). 
In this way we obtain the following equation for A,: 

(26) 

(27) '7s. V[AE(sinh2 kh + h ) ]  + [At(sinh2 Kh + h)]V2S = 0. 

Since V S .  V = k ( d / d ~ ) ,  (27) is an ordinary differential equation along a 
ray. Its solution is 

Ai(sinh2 kh + h )  = [Ai(sinh2Kh + h)Ira exp { - i : o  k-1V2S dT}. (28) 
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Luneberg (1944) has shown that the exponential in (28) is given by 

In (19), ~u(T,)/~u(T) is the ratio of the width of a narrow strip of rays at T, 
to its width at T, or rather the limit of this ratio as the width tends to zero. 
When (29) is used in (28), the equation for the variation of A, along a ray 
finally becomes 

Ag(sinh2 kh + h)k do = const. (30) 
Equation (30) has a simple physical interpretation. Except for a constant 

factor, the left side of (30) is the energy flux per length do of a plane wave 
in water of uniform depth h. Thus (30) expresses the fact that the energy 
flux is constant along a tube of rays. 

4. CONCLUSION 
Let us now summarize our results. The wave amplitude 7 is given by ( l ) ,  

the potential is given by (9), k is given by (17), S is determined by the 
eiconal equation (14), and A, is determined by (30). This yields the leading 
term in the solution for large 8. It conforms with all the principles of the 
geometrical optics theory and thus provides a derivation of that theory. 
Additional terms are given by the A,, which satisfy (16) and the boundary 
conditions (18) and (20). 

In Appendix I1 our result is compared with the asymptotic form of the 
exact solution for plane waves normally incident on a uniformly sloping 
beach. That asymptotic form is obtained from the work of Friedrichs 
(1948). It agrees exactly with our result. 

Our result is not valid at caustics of the ray system since do is zero on 
them, and then (30) shows that A, is infinite. A method for obtaining 
the correct finite result at and near caustics was given by Kay & Keller (1954). 
At a shore line where h = 0, our result also fails because it yields an infinite 
value for A,. In this case the solution for the uniformly sloping beach 
given by Peters (1952) can be used near the shoreline to  yield the correct 
result there. Both of the exceptions just described are instances of 
' boundary layers ' in which the asymptotic behaviour of the solution is 
different from that outside these layers. 

APPENDIX I. ANOTHER ASYMPTOTIC SOLUTION 

We will try to solve (2), (3) and (4) for @ by writing 

@ = ue@S. (A 1) 

(A 4 
i p S y u + u y  = /3u y = 0. (A 3)  

In  terms of ti and S, (2) and (3)  become 

p2(VS)2u-i/3[2VS. Vu+uV2S]  +V2u  = 0, 
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Here V is the three-dimensional gradient and y = Y is used for notational 
convenience. We now assume that u has the asymptotic expansion 

u - 5 U j ( w v ) / ( i P ) j .  (A4) 
j= 1 

Upon inserting (A4) into (A2) and equating coefficients of p, we obtain 

(VS)2 = 0, (A 5) 
2VS.  Vuj +ujV2S = - V2ui-l j 2 0, uP1 = 0. (A 6) 

is,= 1 y = 0 ,  (A7)1 
(Ui), = 0 y = 0, j 2 0. (A 8) 

S = R+i I ;  (A9) 

VR. VI = 0, (VR)‘ = (V1)2. (AlO), ( A l l )  

Similarly from (A3) we obtain 

From (A5) we conclude that S is complex, so we write 

where R and I are real. Now (A5) yields the two equations 

Equation (A 10) shows that the wave-fronts R = const. are orthogonal to 
the surfaces I = const., which are essentially surfaces of constant amplitude. 
This is common in evanescent waves. 

When (A9) is used in (A7), there results 

R, = 0, I ,  = - 1, y = 0. (A 12) 

I =  -y  , R = R(x,z). (A 131, (A 14) 

(VR)’ = 1.  (A15) 

T o  satisfy (A10) and (A12), we assume 

Then (A 11) yields the eiconal equation for R 

T o  solve (A6)  withj = 0 for u,, we assume that u, is real. Then (A6) 
implies that u, = u,(x,z) ,  and that 

As before, (A16) is an ordinary differential equation along a ray. 
solution is 

2VR.  VU, +u, V2R = 0. (A 16) 
Its 

uo (7) = UO (70) [du(To ) /d+)]  1’2. (A 17) 

From (A15) it follows that the rays are straight lines, and along any ray 
R = R(7,) + 7. Then du(7,)/du(7) = ( p  + 7 , ) / ( p  + 7), where p denotes the 
radius of curvature of the wave-front at 7,. 

Upon collecting our results, we find 

(A 18) @ A7-l/2ei5r+Bli. 

In writing (A18) we have collected the factors independent of 7 into the 
factor A and shifted the origin of 7 so that p i- 7 becomes 7. In other words, 
we now measure 7 from the centre of curvature of the wave-front-i.e. 
from the caustic-on each ray. The result (A18) does indeed conform 
to the principles of geometrical optics, but the index of refraction to which 
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it corresponds is unity. The  waves travel with the velocity w / p  = g/w, 
which is the velocity of waves of frequency w in water of infinite depth. 
This was explained in the Introduction. 

I n  constructing the solution (A 18) the condition (4) at the bottom was 
ignored and the result in (A 18) does not satisfy it. It is also impossible to 
satisfy this condition by including additional terms of the sum (A4).  
Therefore, the present expansion applies in water of infinite depth, when 
condition (4) is absent. When the depth is finite we must modify the 
expression ( A l )  by including another term of the same form, which we 
may think of as arising by reflection of the original term from the bottom. 
This reflected term must be so chosen that the two terms together satisfy 
condition (4) at the bottom. But then the reflected term violates the 
condition ( 3 )  at the top, which the first term alone satisfies. We therefore 
add another term, reflected from the top, to  remedy this, then another 
reflected from the bottom, etc. 

has the following 
asymptotic expansion 

On the basis of these considerations, we assume that 

Q - 2 exp(ipSn)p[ni21 2 uni/(ip>j. (A191 
ri = 0 j = O  

Here [n/2] denotes the greatest integer not exceeding n/2,  and the Sn and u, 
are functions of x, y and 2. The  terms with n = 0 are those considered 
before. By proceeding as before we can obtain equations for all the new 
terms. It appears that a t  y = 0 all the S,, with n >, 1 will have positive 
real parts which depend upon the depth. Therefore they will all be of 
exponentially lower order in /3 than the terms with n = 0 which we 
considered before. Therefore, our previous result will still determine the 
surface shape or wave pattern. 

APPENDIX 11. COMPARISON WITH AN EXACT SOLUTION 

Friedrichs (1948) has obtained the asymptotic form of the exact solution 
for waves on a sloping beach as the slope angle tends to zero. He  considered 
only points on the top surface y = 0. However, it can be seen that his 
equ&ion (16) also holds for y < 0 provided that x is replaced by x + iy in (12). 
If we then treat y as small compared to x, we obtain 

and 

When these results are inserted into his (16) and a typographical error in 
the second exponent is corrected, (16) becomes 

X(x + iy) = h(x) + iwyh'(x) + ... , 

k[X(x+i_y)] = k[X(x)]+iw~_y/h(x)+ ... . 

X:(x,y,t) = -(1 -X)A(X)exp[i(w-%+t+&n)-y/X]- 
- (1 + X)A (X)exp[ - i(w-lk + f +in) +y/X] + ... . 

'Then the real potential function 4 is given by 
4 = B'(Xg} = -A(X)[(l -X)e-v'n+ (1 +h)e~~n]cos(o- lk+t+)n)  

= -2A(A)[cosh(y/X) +X~inh(y/h)]cos(w-~k+t +in). 
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Now we reintroduce dimensional variables by replacing x by Bx, t by at 
(a is the angular frequency and p = az/g) and we define the depth h = &ox 
(w is the slope of the bottom). Then (12) 
becomes k' tanh K h  = 1. Now 4 is given by 

We also introduce k' = A-I. 

From the definition of A(X), it follows that A(h)  = Aocoshk'h, where A, 
is given by our equation (30). 

This is exactly the sum of two expressions of the form (9) given by our 
asymptotic solution. 

Thus, 4 finally becomes 
4 = - 2 A o c o s h [ k ' ( y + h ) ] ~ 0 ~ ( ~ 0 - ~ k + a t + $ 7 ~ ) .  

This paper represents results obtained under the sponsorship of the 
Office of Naval Research, Contract Nonr-285(06). 
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